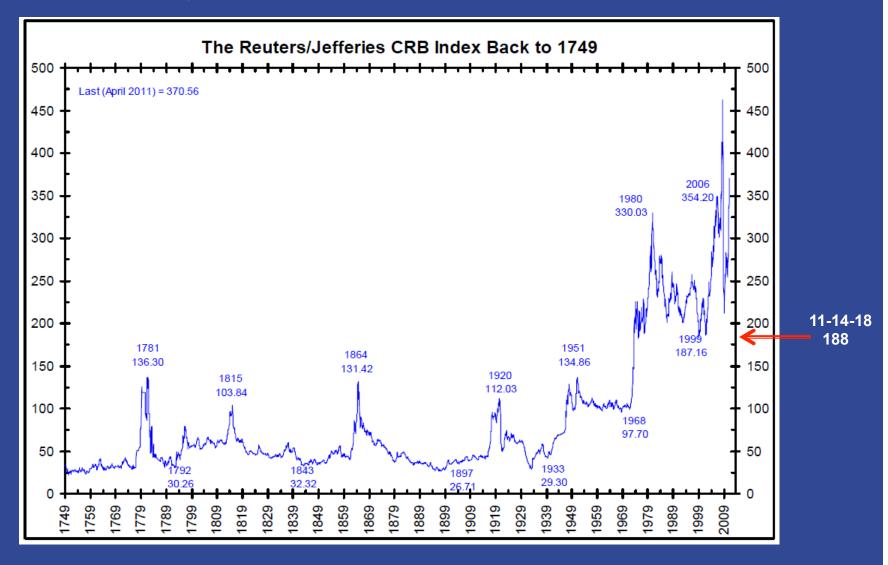
Alaska Resources Development Council November 14-15, 2018

Alaska's Natural Resource Commodities: A 10-Year Outlook

David R. Hammond, Ph.D.

Principal Mineral Economist

Hammond International Group

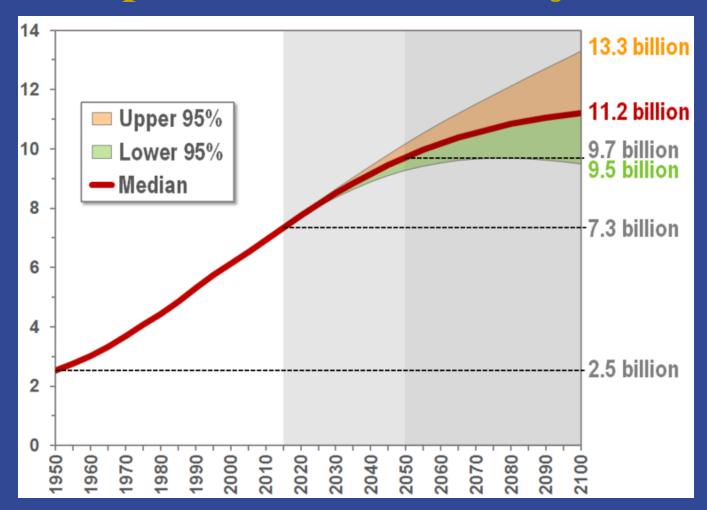

Commodities are the Fundamental Source of Economic Wealth!

Dave's Axiom of Wealth:

"Real Societal Wealth is Created Only by Growing It, Digging It out of the Ground, or Building It as a Tangible Product with Your Hands; All Other Forms of Commercial Activity are Just Transfers of Wealth Between Parties!"

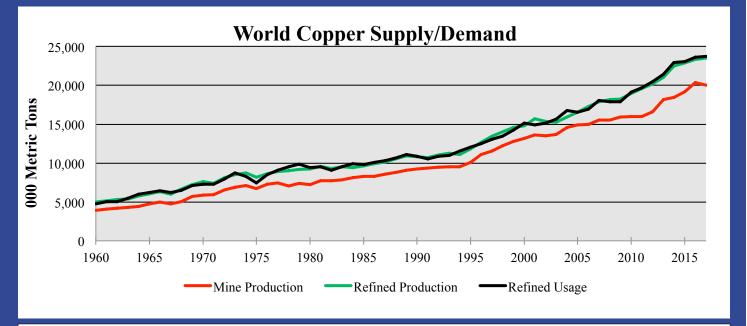
Commodity Prices Over Time:

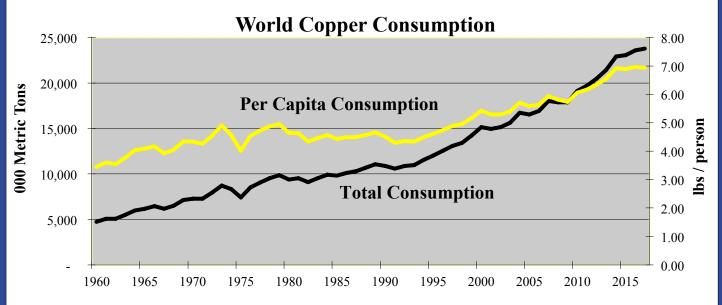
Drivers of Mineral Demand:


- **World Population Growth**
- > Intensity of Use

Drivers of Mineral Price:

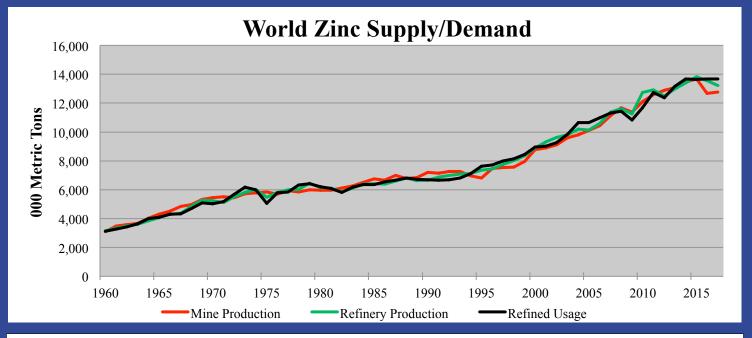
- > Short-term Demand
- > Short-term Supply

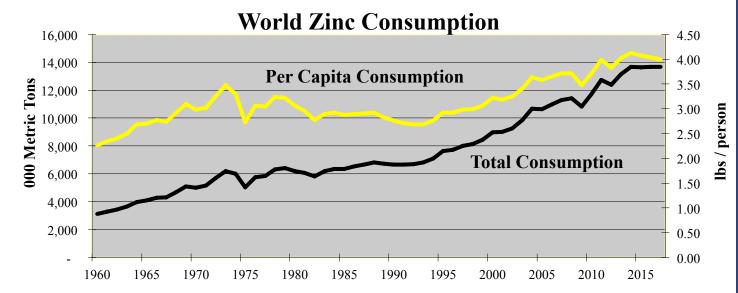

World Population Growth Projections:



Source: Heilig, Gerhard K. (2016), United Nations, Department of Economic and Social Affairs, Population Division, World Population Prospects: The 2015 Revision, Volume I.

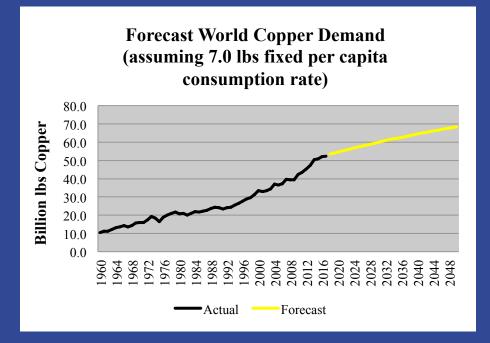
Copper:

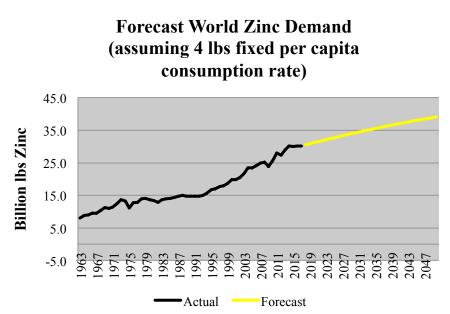




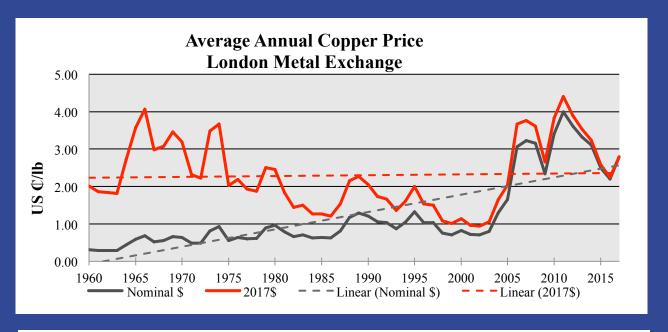
Source: ICSG

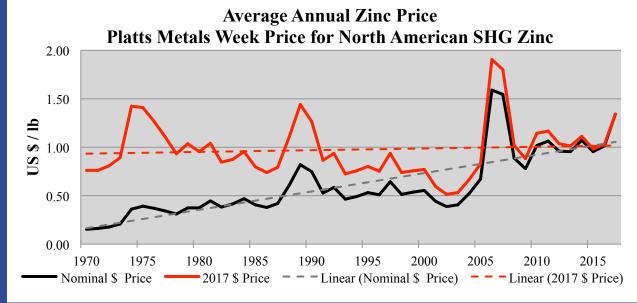
Zinc:





Source: ILZSG, USGS

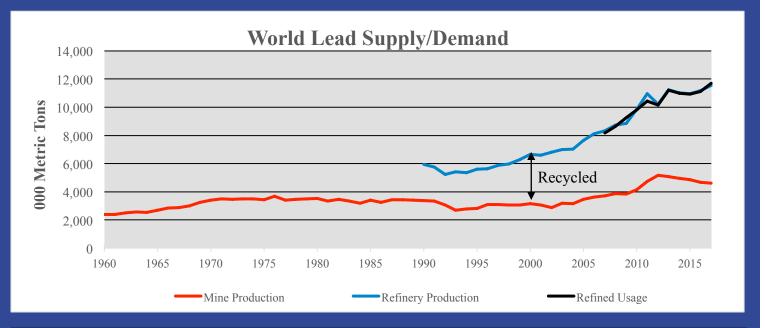

Copper & Zinc – Future Demand



Nominal & Real 2017\$ Prices:

Future Issues for Copper:

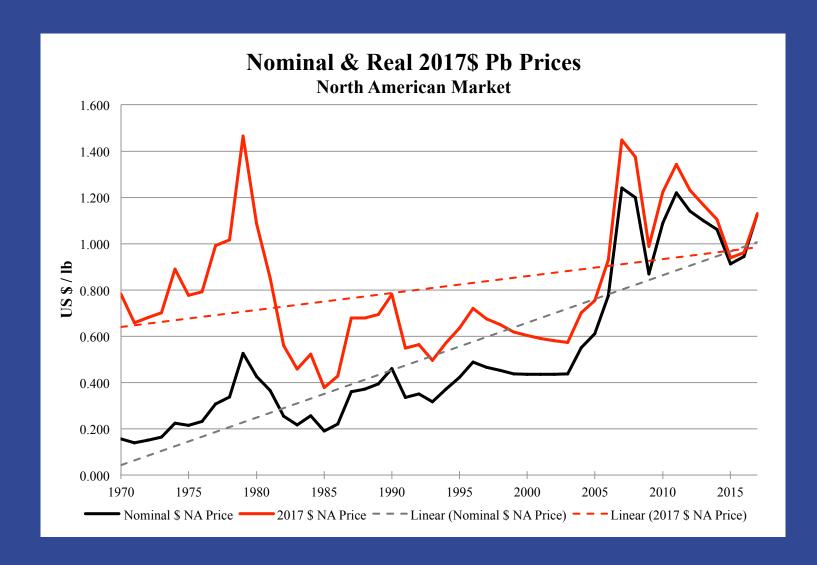
Demand:


- Driver continues to be economic growth in key consuming economies.
- Uncertainties induced by tariff and other trade disputes.
- Currency exchange volatility

Supply:

- Need to replace 50 billion pounds produced each year.
- Declining ore grades at major existing deposits.
- Discovering of new giant near-surface deposits

Lead:



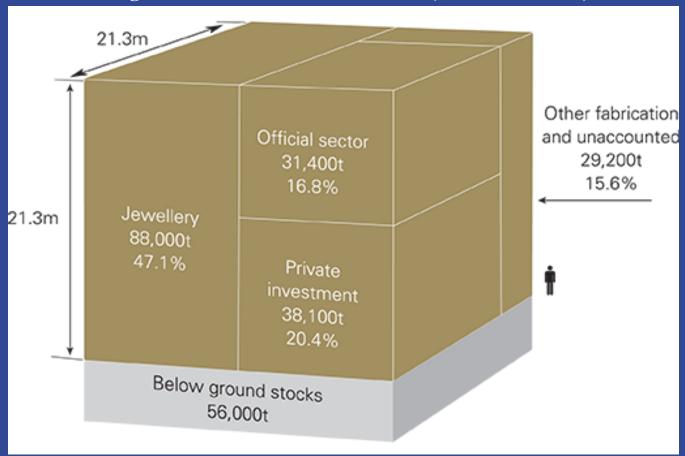
Source: ILZSG, USGS

Nominal & Real 2017\$ Pb Prices:

Future Issues for Zinc & Lead:

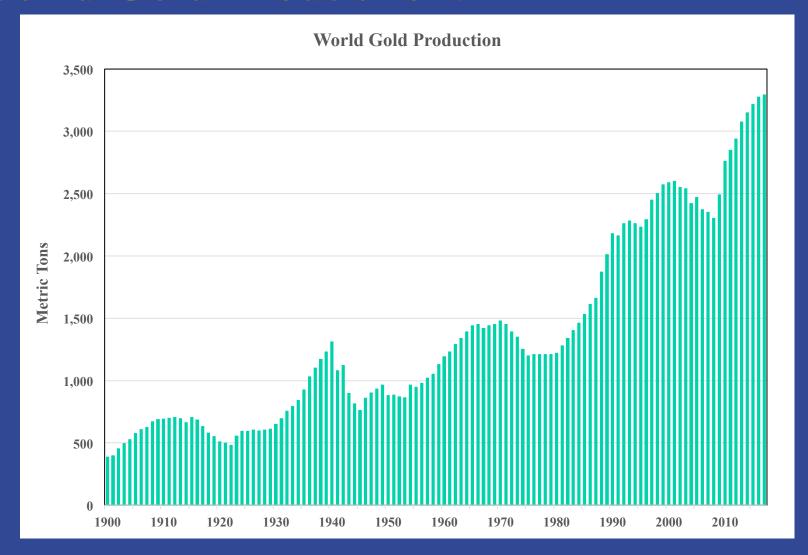
Demand:

- Zinc is critical for societal development
- A lot more galvanization of steel products will occur
- More uses evolving, such as in health and agriculture

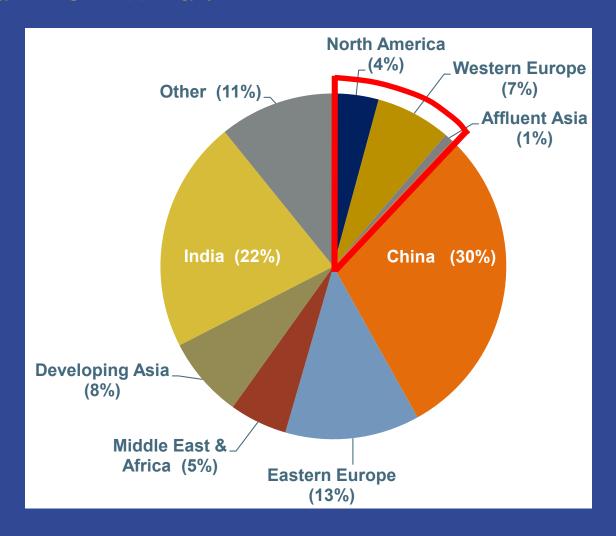

Supply:

- Existing high quality deposits are being mined out
- Lack of new discoveries
- More underground deposits in future, with higher costs

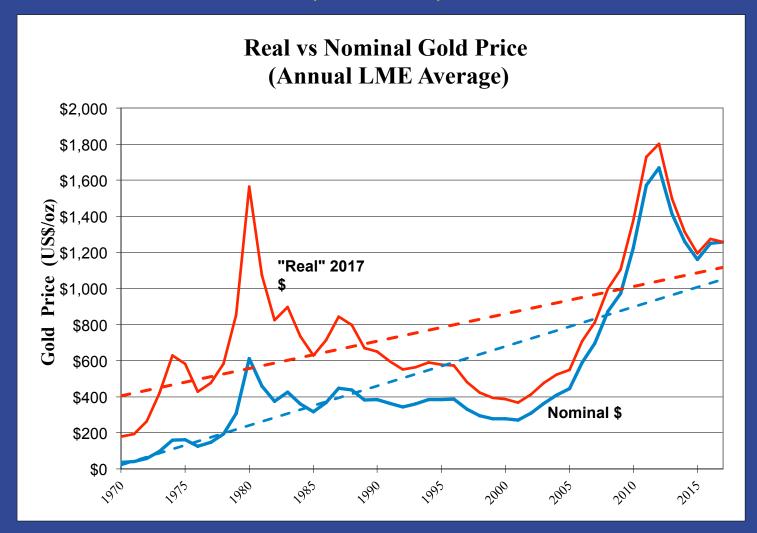
The World Gold Inventory:


Total above-ground stocks = \sim 187,000 tonnes (6 billion ounces)

Source: World Gold Council; Sep 2016


World Gold Production:

Source: USGS, World Gold Council


Gold Demand:

Source: World Gold Council; Sep 2016

Nominal & Real (2017\$) Gold Prices:

Source: Nominal Price Data from KITCO

Future Issues for Gold:

Demand:

- Millennial generation lack of interest in gold.
- ETF effect on price volatility.
- Fall-off in China and India demand:
 - **Establishment of formal and trustworthy banking systems.**
 - Cryptocurrencies

Supply:

- Declining ore grades at existing mines.
- New "giant" discoveries are increasingly rare.
- Underground deposits require higher grade to be economic.

Economic Fundamentals for Gold are substantially different from other metals!

Critical Materials:

The Periodic Table of the Elements

l																	
1																	2
Н																	He
Hydrogen																	Helium
1,00794												-		_	0	0	4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
Lithium 6.941	Beryllium 9,012182											Boron 10.811	Carbon 12,0107	Nitrogen 14,00674	Oxygen 15,9994	Fluorine 18,9984032	Neon 20,1797
0.941	12											13	14	15	16	17	18
1.1														D		7.1	
Na	Mg Magnesium											Al	Si	1	S	Cl	Ar
Sodium 22,989770	24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30,973761	Sulfur 32.066	6 bleine 35,4527	Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{v}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zine	Gallium	Jermanium	Arsenic	Selenium	Bromine	Krypton
39,0983	40.078	44.955910	47.867	50.9415		54.938049	55.845	\$8,933200	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd \	In	Sn	Sb	Te	I	Xe
Rubidium	Strontium	Yttrium 88.90585	Zirconium	Niobium 92,90638	Molybdenam	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
85.4678 55	87.62 56	57	91.224	73	95.94 74	75	76	77	106.42 78	107.8682 79	112.411 80	114.818	118.710	121.760	127.60 84	126.90447 85	131.29
						, -		l <u>i</u> i									
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir /	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium 132.90545	Barium 137.327	Lanthanum 138.9055	Hafnium 178.49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

	58	39	60	61	62	63	64	65	66	67	68	69	7Û	71
J	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Т	Comm	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Longith
L	140.116	140.90705	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.03421	1/3.04	174.967
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
- 1	232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Future Issues for Critical Materials:

Demand:

- Demand is complex and evolving; aggressive research on new apps.
- Consumption currently involves relatively small tonnages.
- US imports are large but are we really serious about security of supply?

Supply:

- Separation technologies are technically challenging and expensive.
- Economic production of end products requires integrated process.
- Lots of "prospects" but can they be turned into economic mines?

Alaska Continues to be Ranked High for Mineral **Investment:**

80

New South Wales

Northern Ireland

Democratic Republic of Congo (DRC)

Alberta

Tasmanla

Mongolla*

New Zealand

Nova Scotia

Neuquen*

Guatemala

Zambia

Namibia

Figure 3: Investment Attractiveness Index

Nevada

Quebec

Ontario Chile

Alaska

Queensland

South Australia

Ireland, Republic of

Newfoundland & Labrador

Western Australia

Source: Fraser Institute Annual Survey of Mining Companies 2017

fraserinstitute.org

Alaska's Position: Alaska: 10/92 overall (was ranked 5th in 2013) Global Mining Investment Attractiveness Ranking For mineral potential: 5/91 For uncertainty of existing regulations: 41/91 More attractive Less attractive **FRASER**

Conclusions:

- Global demand for base metals will grow.
- New mine discovery will require much higher exploration investment.
- > Alaska will remain a highly attractive region for mineral investment, from both resource potential and political favorability perspectives.
- Problematic governmental jurisdictions of today will be just as risky in 10 years.

Metal Price Outlook:

	Current LME	Long-Run Price Bank Consensus	2030 Price* HIG	Price Volatility** HIG
Copper:	\$2.76/lb	\$ 3.10/lb	\$ 4.25/lb	35%
Zinc:	\$ 1.16/lb	\$ 1.10/lb	\$ 1.30/lb	25%
Lead:	\$.87/lb	\$.95/lb	\$ 1.00/lb	20%
Gold: \$	51,203.30/oz	\$ 1,335.00/oz	1,200.00/oz	15%

^{*} In 2018 Constant Dollars ** Annual

Future Issues for Oil & Gas:

- Global oil demand will continue to grow and is unlikely to peak before the 2040s-50s; wide-spread adoption of EVs not going to happen as fast as advocates claim.
- Oil demand will shift significantly from transport fuel to petrochemical manufacture.
- LNG export direct from North Slope to Europe and Asia with climate change.
- Possible/Probable breakup of OPEC.

Fact: 100 million bbls/day = 35 billion bbls/yr.!

